Diagram Groups Are Totally Orderable
نویسنده
چکیده
In this paper, we introduce the concept of the independence graph of a directed 2-complex. We show that the class of diagram groups is closed under graph products over independence graphs of rooted 2-trees. This allows us to show that a diagram group containing all countable diagram groups is a semi-direct product of a partially commutative group and R. Thompson's group F. As a result, we prove that all diagram groups are totally orderable.
منابع مشابه
Diagram Groups, Braid Groups, and Orderability
We prove that all diagram groups (in the sense of Guba and Sapir) are left-orderable. The proof is in two steps: firstly, it is proved that all diagram groups inject in a certain braid group on infinitely many strings, and secondly, this group is then shown to be left-orderable.
متن کامل1 0 Fe b 20 03 Non - left - orderable 3 - manifold groups
We show that several torsion free 3-manifold groups are not left-orderable. Our examples are groups of cyclic branched covers of S branched along links. The figure eight knot provides simple nontrivial examples. The groups arising in these examples are known as Fibonacci groups which we show not to be left-orderable. Many other examples of non-orderable groups are obtained by taking 3-fold bran...
متن کاملar X iv : m at h / 03 02 09 8 v 2 [ m at h . G T ] 1 1 M ay 2 00 4 Non - left - orderable 3 - manifold groups
We show that several torsion free 3-manifold groups are not left-orderable. Our examples are groups of cyclic branched coverings of S branched along links. The figure eight knot provides simple nontrivial examples. The groups arising in these examples are known as Fibonacci groups which we show not to be left-orderable. Many other examples of non-orderable groups are obtained by taking 3-fold b...
متن کاملOrdering pure braid groups on closed surfaces
We prove that the pure braid groups on closed, orientable surfaces are bi-orderable, and that the pure braid groups on closed, non-orientable surfaces have generalized torsion, thus they are not bi-orderable.
متن کاملOn the Recognition of Bipolarizable and P4-simplicial Graphs
The classes of Raspail (also known as Bipolarizable) and P4-simplicial graphs were introduced by Hoàng and Reed who showed that both classes are perfectly orderable and admit polynomial-time recognition algorithms [16]. In this paper, we consider the recognition problem on these classes of graphs and present algorithms that solve it in O(nm) time. In particular, we prove properties of the graph...
متن کامل